A State-Space Calculus for Rational Probability Density Functions and Applications to Non-Gaussian Filtering
نویسندگان
چکیده
We propose what be believe to be a novel approach to perform calculations for rational density functions using state space representations of the densities. By standard results from realisation theory, a rational probability density function is considered to be the transfer function of a linear system with generally complex entries. The stable part of this system is positive-real, which we call the density summand. The existence of moments is investigated using the Markov parameters of the density summand. Moreover, explicit formulae are given for the existing moments in terms of these Markov parameters. One of the main contributions of the paper are explicit state space descriptions for products and convolutions of rational densities. As an application which is of interest in its own right, the filtering problem is investigated for a linear time-varying system whose noise inputs have rational probability density functions. In particular state space formulations are derived for the calculation of the prediction and update equations. The case of Cauchy noise is treated as an illustrative example.
منابع مشابه
Filtering and estimation in stochastic volatility models with rationally distributed disturbances
This paper deals with the filtering problem for a class of discrete time stochastic volatility models in which the disturbances have rational probability density functions. This includes the Cauchy distributions and Student t-distributions with odd number of degrees of freedom. Using state space realizations to represent the rational probability density functions we are able to solve the filter...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملNon-Newtonian Fuzzy numbers and related applications
Although there are many excellent ways presenting the principle of the classical calculus, the novel presentations probably leads most naturally to the development of the non-Newtonian calculus. The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Since this self-contained work is intended for a wide audience, inc...
متن کاملFractional Probability Measure and Its Properties
Based on recent studies by Guy Jumarie [1] which defines probability density of fractional order and fractional moments by using fractional calculus (fractional derivatives and fractional integration), this study expands the concept of probability density of fractional order by defining the fractional probability measure, which leads to a fractional probability theory parallel to the classical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 40 شماره
صفحات -
تاریخ انتشار 2001